DeepViscosity API
The DeepViscosity API provides deep learning-based prediction of monoclonal antibody viscosity classes. This API is based on the DeepViscosity project, which uses an ensemble deep learning ANN model to predict high-concentration monoclonal antibody viscosity classes (Low ≤ 20 cP, High > 20 cP).
The API supports:
- Viscosity Classification: Predicts whether a monoclonal antibody will have Low (≤ 20 cP) or High (> 20 cP) viscosity
- Spatial Descriptors: Provides 30 spatial properties from the DeepSP surrogate model
- Batch Processing: Process multiple antibodies in a single job
Command Line Interface
Examples
Predict viscosity classes for monoclonal antibodies
lev engine submit deep-viscosity --input-csv input.csv
Flags
--input-csv
(str) (Required)- Path to the input CSV file containing antibody sequences
- The CSV file must have the following columns:
Name
: Antibody identifier/nameHeavy_Chain
: Heavy chain amino acid sequenceLight_Chain
: Light chain amino acid sequence
- Example format:
Name,Heavy_Chain,Light_Chain mAb1,EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSAITWNSGHIDYADSVEGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAKVSYLSTASSLDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQGIRNYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQRYNRAPYTFGQGTKVEIK
--comment
(str) (Optional)- Optional comment to associate with the job
Python Interface
Examples
Predict viscosity classes for monoclonal antibodies:
from engine import EngineClient
client = EngineClient()
client.authorize()
job_id = client.submit_deep_viscosity(
input_csv="input.csv"
)
Predict viscosity classes with custom comment:
job_id = client.submit_deep_viscosity(
input_csv="input.csv",
comment="High concentration mAb viscosity prediction"
)
Parameters
input_csv
(str) (Required)- Path to the input CSV file containing antibody sequences
- Must follow the same format as described in the command line interface
comment
(str) (Optional)- Optional comment to associate with the job
Outputs
DeepViscosity_classes.csv
(CSV file)- Contains the predicted viscosity classes for each input antibody
- Columns include:
Name
: Antibody identifier from inputViscosity_Class
: Predicted class (Low or High)- Additional metadata and confidence scores
DeepViscosity_descriptors.csv
(CSV file)- Contains the 30 spatial descriptors from the DeepSP surrogate model
- These descriptors are used as features for the viscosity prediction model
Processing Time
Typical processing times vary by the number of antibodies in the input file, but are generally fast due to the efficient deep learning architecture.
Input Format
The input CSV file must contain exactly three columns:
- Name: A unique identifier for each antibody (e.g., “mAb1”, “Antibody_A”)
- Heavy_Chain: The complete heavy chain amino acid sequence
- Light_Chain: The complete light chain amino acid sequence
Example input file:
Name,Heavy_Chain,Light_Chain
mAb1,EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSAITWNSGHIDYADSVEGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAKVSYLSTASSLDYWGQGTLVTVSS,DIQMTQSPSSLSASVGDRVTITCRASQGIRNYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQRYNRAPYTFGQGTKVEIK
mAb2,EVQLVESGGGLVQPGGSLRLSCAASGFTFSDSWIHWVRQAPGKGLEWVAWISPYGGSTYYADSVKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARRHWPGGFDYWGQGTLVTVSA,DIQMTQSPSSLSASVGDRVTITCRASQDVSTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYLYHPATFGQGTKVEIK
References
Citation
Lateefat A. Kalejaye, Jia-Min Chu, I-En Wu, Bismark Amofah, Amber Lee, Mark Hutchinson, Chacko Chakiath, Andrew Dippel, Gilad Kaplan, Melissa Damschroder, Valentin Stanev, Maryam Pouryahya, Mehdi Boroumand, Jenna Caldwell, Alison Hinton, Madison Kreitz, Mitali Shah, Austin Gallegos, Neil Mody and Pin-Kuang Lai (2025). Accelerating high-concentration monoclonal antibody development with large-scale viscosity data and ensemble deep learning. mAbs, 17(1). https://doi.org/10.1080/19420862.2025.2483944